歡迎進入濰坊日麗環保設備有限公司網站!
Product
當前位置:首頁 / 產品中心 / 污水處理設備 / 療養院智能污水處理設備 / 云南養療院污水處理設備優質生產廠家
云南養療院污水處理設備優質生產廠家一體化污水處理設備是將一沉池、I、II級接觸氧化池、二沉池、污泥池集中一體的設備,并在I、II級接觸氧化池中進行鼓風曝氣,使接觸氧化法和活性污泥法有效的結合起來,同時具備兩者的優點,并克服兩者的缺點,使污水處理水平進一步提高。
產品分類
PRODUCT CLASSIFICATION相關文章
RELATED ARTICLES品牌 | 其他品牌 | 應用領域 | 環保,食品 |
---|
云南養療院污水處理設備優質生產廠家
云南養療院污水處理設備優質生產廠家
SBR設計需特別注意的問題:
(一)主要設施與設備
1、設施的組成
本法原則上不設初次沉淀池,本法應用于小型污水處理廠的主要原因是設施較簡單和維護管理較為集中。
為適應流量的變化,反應池的容積應留有余量或采用設定運行周期等方法。但是,對于游覽地等流量變化很大的場合,應根據維護管理和經濟條件,研究流量調節池的設置。
2、反應池
反應池的形式為*混合型,反應池十分緊湊,占地很少。形狀以矩形為準,池寬與池長之比大約為1:1~1:2,水深4~6米。
反應池水深過深,基于以下理由是不經濟的:①如果反應池的水深大,排出水的深度相應增大,則固液分離所需的沉淀時間就會增加。②的上清液排出裝置受到結構上的限制,上清液排出水的深度不能過深。
反應池水深過淺,基于以下理由是不希望的:①在排水期間,由于受到活性污泥界面以上的小水深限制,上清液排出的深度不能過深。②與其他相同BOD—SS負荷的處理方式相比,其優點是用地面積較少。
反應池的數量,考慮清洗和檢修等情況,原則上設2個以上。在規模較小或投產初期污水量較小時,也可建一個池。
3、排水裝置
排水系統R處理工藝設計的重要內容,也是其設計中特色和關系到系統運行成敗的關鍵部分。目前,國內外的SBR排水裝置大致可歸納為以下幾種:⑴潛水泵單點或多點排水。這種方式電耗大且容易吸出沉淀污泥;⑵池端(側)多點固定閥門排水,由上自下開啟閥門。缺點操作不方便,排水容易帶泥;⑶設備潷水器。潷水器是是一種能隨水位變化而調節的出水堰,排水口淹沒在水面下一定深度,可防止浮渣進入。理想的排水裝置應滿足以下幾個條件:①單位時間內出水量大,流速小,不會使沉淀污泥重新翻起;②集水口隨水位下降,排水期間始終保持反應當中的靜止沉淀狀態;③排水設備堅固耐用且排水量可無級調控,自動化程度高。
在設定一個周期的排水時間時,必須注意以下項目:
①上清液排出裝置的溢流負荷——確定需要的設備數量;
②活性污泥界面上的小水深——主要是為了防止污泥上浮,由上清液排出裝置和溢流負荷確定,性能方面,水深要盡可能小;
③隨著上清液排出裝置的溢流負荷的增加,單位時間的處理水排出量增大,可縮短排水時間,相應的后續處理構筑物容量須擴大;
④在排水期,沉淀的活性污泥上浮是發生在排水即將結束的時候,從沉淀工序的中期就開始排水符合SBR法的運行原理。
SBR工藝的需氧與供氧
SBR工藝有機物的降解規律與推流式曝氣池類似,推流式曝氣池是空間(長度)上的推流,而SBR反應池是時間意義上的推流。由于SBR工藝有機物濃度是逐漸變化的,在反應初期,池內有機物濃度較高,如果供氧速率小于耗氧速率,則混合液中的溶解氧為零,對單一的微生物而言,氧氣的得到可能是間斷的,供氧速率決定了有機物的降解速率。隨著好氧進程的深入,有機物濃度降低,供氧速率開始大于耗氧速率,溶解氧開始出現,微生物開始可以得到充足的氧氣供應,
有機物濃度的高低成為影響有機物降解速率的一個重要因素。從耗氧與供氧的關系來看,在反應初期SBR反應池保持充足的供氧,可以提高有機物的降解速度,隨著溶解氧的出現,逐漸減少供氧量,可以節約運行費用,縮短反應時間。SBR反應池通過曝氣系統的設計,采用漸減曝氣更經濟、合理一些。
SBR工藝排出比(1/m)的選擇
SBR工藝排出比(1/m)的大小決定了SBR工藝反應初期有機物濃度的高低。排出比小,初始有機物濃度低,反之則高。根據微生物降解有機物的規律,當有機物濃度高時,有機物降解速率大,曝氣時間可以減少。但是,當有機物濃度高時,耗氧速率也大,供氧與耗氧的矛盾可能更大。此外,不同的廢水活性污泥的沉降性能也不同。污泥沉降性能好,沉淀后上清液就多,宜選用較小的排出比,反之則宜采用較大的排出比。排出比的選擇還與設計選用的污泥負荷率、混合液污泥濃度等有關。
SBR反應池混合液污泥濃度
根據活性污泥法的基本原理,混合液污泥濃度的大小決定了生化反應器容積的大小。SBR工藝也同樣如此,當混合液污泥濃度高時,所需曝氣反應時間就短,SBR反應池池容就小,反之SBR反應池池容則大。但是,當混合液污泥濃度高時,生化反應初期耗氧速率增大,供氧與耗氧的矛盾更大。此外,池內混合液污泥濃度的大小還決定了沉淀時間。污泥濃度高需要的沉淀時間長,反之則短。當污泥的沉降性能好,排出比小,有機物濃度低,供氧速率高,可以選用較大的數值,反之則宜選用較小的數值。SBR工藝混合液污泥濃度的選擇應綜合多方面的因素來考慮。
關于污泥負荷率的選擇
污泥負荷率是影響曝氣反應時間的主要參數,污泥負荷率的大小關系到SBR反應池終出水有機物濃度的高低。當要求的出水有機物濃度低時,污泥負荷率宜選用低值;當廢水易于生物降解時,污泥負荷率隨著增大。污泥負荷率的選擇應根據廢水的可生化性以及要求的出水水質來確定。
SBR工藝與調節、水解酸化工藝的結合
SBR工藝采用間歇進水、間歇排水,SBR反應池有一定的調節功能,可以在一定程度上起到均衡水質、水量的作用。通過供氣系統、攪拌系統的設計,自動控制方式的設計,閑置期時間的選擇,可以將SBR工藝與調節、水解酸化工藝結合起來,使三者合建在一起,從而節約投資與運行管理費用。
在進水期采用水下攪拌器進行攪拌,進水電動閥的關閉采用液位控制,根據水解酸化需要的時間確定開始曝氣時刻,將調節、水解酸化工藝與SBR工藝有機的結合在一起。反應池進水開始作為閑置期的結束則可以使整個系統能正常運行。具體操作方式如下所述:
進水開始既為閑置結束,通過上一組SBR池進水結束時間來控制;
進水結束通過液位控制,整個進水時間可能是變化的。
水解酸化時間由進水開始至曝氣反應開始,包括進水期,這段時間可以根據水量的變化情況與需要的水解酸化時間來確定,不小于在小流量下充滿SBR反應池所需的時間。
曝氣反應開始既為水解酸化攪拌結束,曝氣反應時間可根據計算得出。
沉淀時間根據污泥沉降性能及混合液污泥濃度決定,它的開始即為曝氣反應的結束。
排水時間由潷水器的性能決定,潷水結束可以通過液位控制。
閑置期的時間選擇是調節、水解酸化及SBR工藝結合好壞的關鍵。閑置時間的長短應根據廢水的變化情況來確定,實際運行中,閑置時間經常變動。通過閑置期間的調整,將SBR反應池的進水合理安排,使整個系統能正常運轉,避免整個運行過程的紊亂。
SBR調試程序及注意事項
(一)活性污泥的培養馴化
SBR反應池去除有機物的機理與普通活性污泥法基本相同,主要大量繁殖的微生物群體降解污水中的有機物。
活性污泥處理系統在正式投產之前的首要工作是培養和馴化活性污泥。活性污泥的培養馴化可歸納為異步培馴法、同步培馴法和接種培馴法,異步法為先培養后馴化,同步法則培養和馴化同時進行或交替進行,接種法系利用其他污水處理廠的剩余污泥,再進行適當的培馴。
培養活性污泥需要有菌種和菌種所需要的營養物。對于城市污水,其中的菌種和營養都具備,可以直接進行培養。對于工業廢水,由于其中缺乏專性菌種和足夠的營養,因此在投產時除用一般的菌種和所需要營養培養足夠的活性污泥外,還應對所培養的活性污泥進行馴化,使活性污泥微生物群體逐漸形成具有代謝特定工業廢水的酶系統,具有某種專性。
(二)試運行
活性污泥培養馴化成熟后,就開始試運行。試運行的目的使確定的運行條件。
在活性污泥系統的運行中,影響因素很多,混合液污泥濃度、空氣量、污水量、污水的營養情況等。活性污泥法要求在曝氣池內保持適宜的營養物與微生物的比值,供給所需要的氧,使微生物很好的和有機物相接觸,全體均勻的保持適當的接觸時間。
對SBR處理工藝而言,運行周期的確定還與沉淀、排水排泥時間及閑置時間有關,還和處理工藝中所設計的SBR反應器數量有關。運行周期的確定除了要保證處理過程中運行的穩定性和處理效果外,還要保證每個池充水的順序連續性,即合理的運行周期應滿足運行過程中避免兩個或兩個以上的池子同時進水或個池子和個池子進水脫節的現象。同時通過改變曝氣時間和排水時間,對污水
進行不同的反應測試,確定的運行模式,達到的出水水質、經濟的運行方式。
(三)污泥沉降性能的控制
活性污泥的良好沉降性能是保證活性污泥處理系統正常運行的前提條件之一。如果污泥的沉降性能不好,在SBR的反應期結束后,污泥難以沉淀,污泥的壓密性差,上層清液的排除就受到限制,水泥比下降,導致每個運行周期處理污水量下降。如果污泥的絮凝性能差,則出水中的懸浮固體(SS)含量將升高,COD上升,導致處理出水水質的下降。
導致污泥沉降性能惡化的原因是多方面的,但都表現在污泥容積指數(SVI)的升高。SBR工藝中由于反復出現高濃度基質,在菌膠團菌和絲狀菌共存的生態環境中,絲狀菌一般是不容易繁殖的,因而發生污泥絲狀菌膨脹的可能性是非常低的。SBR較容易出現高粘性膨脹問題。這可能是由于SBR法是一個瞬態過程,混合液內基質逐步降解,液相中基質濃度下降了,但并不*說明基質已被氧化去除,加之許多污水的污染物容易被活性污泥吸附和吸收,在很短的時間內,混合液中的基質濃度可降至很低的水平,從污水處理的角度看,已經達到了處理效果,但這僅僅是一種相的轉移,混合液中基質的濃度的降低僅是一種表面現象。可以認為,在污水處理過程中,菌膠團之所以形成和有所增長,就要求系統中有一定數量的有機基質的積累,在胞外形成多糖聚合物(否則菌膠團不增長甚至出現細菌分散生長現象,出水渾濁)。在實際操作過程中往往會因充水時間或曝氣方式選擇的不適當或操作不當而使基質的積累過量,致使發生污泥的高粘性膨脹。
污染物在混合液內的積累是逐步的,在一個周期內一般難以馬上表現出來,需通過觀察各運行周期間污泥沉降性能的變化才能體現出來。為使污泥具有良好的沉降性能,應注意每個運行周期內污泥的SVI變化趨勢,及時調整運行方式以確保良好的處理效果。